Exercise 22

Use graphs to discover the asymptotes of the curve. Then prove what you have discovered.

$$
y=\sqrt{x^{2}+x+1}-\sqrt{x^{2}-x}
$$

Solution

Below is a graph of the function versus x.

Start by rewriting the difference as a quotient.

$$
\begin{aligned}
y & =\sqrt{x^{2}+x+1}-\sqrt{x^{2}-x} \\
& =\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}-x}\right) \times \frac{\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x}}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x}} \\
& =\frac{\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}-x}\right)\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x}\right)}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x}} \\
& =\frac{\left(x^{2}+x+1\right)-\left(x^{2}-x\right)}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x}} \\
& =\frac{2 x+1}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x}}
\end{aligned}
$$

To determine the vertical asymptote(s), set what's in the denominator equal to zero and solve the equation for x.

$$
\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x}=0
$$

No value of x satisfies this equation, so there are no vertical asymptotes. To determine the horizontal asymptote(s), find the limit of the function as $x \rightarrow \pm \infty$. In the limit as $x \rightarrow-\infty$, make the substitution, $u=-x$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} y & =\lim _{x \rightarrow-\infty} \frac{2 x+1}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x}} \\
& =\lim _{u \rightarrow \infty} \frac{2(-u)+1}{\sqrt{(-u)^{2}+(-u)+1}+\sqrt{(-u)^{2}-(-u)}} \\
& =\lim _{u \rightarrow \infty} \frac{-2 u+1}{\sqrt{u^{2}-u+1}+\sqrt{u^{2}+u}} \\
& =\lim _{u \rightarrow \infty} \frac{-2 u+1}{\sqrt{u^{2}\left(1-\frac{1}{u}+\frac{1}{u^{2}}\right)}+\sqrt{u^{2}\left(1+\frac{1}{u}\right)}} \\
& =\lim _{u \rightarrow \infty} \frac{-2 u+1}{u \sqrt{1-\frac{1}{u}+\frac{1}{u^{2}}}+u \sqrt{1+\frac{1}{u}}} \\
& =\lim _{u \rightarrow \infty} \frac{-2+\frac{1}{u}}{\sqrt{1-\frac{1}{u}+\frac{1}{u^{2}}}+\sqrt{1+\frac{1}{u}}} \\
& =\frac{-2+0}{\sqrt{1-0+0}+\sqrt{1+0}} \\
& =-1
\end{aligned}
$$

Therefore, one horizontal asymptote is $y=-1$. Now find the limit as $x \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} y & =\lim _{x \rightarrow \infty} \frac{2 x+1}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x}} \\
& =\lim _{x \rightarrow \infty} \frac{2 x+1}{x \sqrt{1+\frac{1}{x}+\frac{1}{x^{2}}}+x \sqrt{1-\frac{1}{x}}} \\
& =\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x}}{\sqrt{1+\frac{1}{x}+\frac{1}{x^{2}}}+\sqrt{1-\frac{1}{x}}} \\
& =\frac{2+0}{\sqrt{1+0+0}+\sqrt{1-0}} \\
& =1
\end{aligned}
$$

Therefore, the other horizontal asymptote is $y=1$.

